Skew-symmetric and essentially unitary operators via Berezin symbols
نویسندگان
چکیده
منابع مشابه
Toeplitz Operators with Essentially Radial Symbols
For Topelitz operators with radial symbols on the disk, there are important results that characterize boundedness, compactness, and its relation to the Berezin transform. The notion of essentially radial symbol is a natural extension, in the context of multiply-connected domains, of the notion of radial symbol on the disk. In this paper we analyze the relationship between the boundary behavior ...
متن کاملToeplitz Operators with Bmo Symbols and the Berezin Transform
We prove that the boundedness and compactness of the Toeplitz operator on the Bergman space with a BMO 1 symbol is completely determined by the boundary behaviour of its Berezin transform. This result extends the known results in the cases when the symbol is either a positive L 1-function or an L ∞ function. 1. Introduction. Toeplitz operators are one of the most widely studied classes of concr...
متن کاملUnitary Completions Of Complex Symmetric And Skew Symmetric Matrices ∗
Unitary symmetric completions of complex symmetric matrices are obtained via Autonne decomposition. The problem arises from atomic physics. Of independent interest unitary skew symmetric completions of skew symmetric matrices are also obtained by Hua decomposition.
متن کاملCompact Operators via the Berezin Transform
In this paper we prove that if S equals a finite sum of finite products of Toeplitz operators on the Bergman space of the unit disk, then S is compact if and only if the Berezin transform of S equals 0 on ∂D. This result is new even when S equals a single Toeplitz operator. Our main result can be used to prove, via a unified approach, several previously known results about compact Toeplitz oper...
متن کاملOrthogonal and Skew-Symmetric Operators in Real Hilbert Space
In the theory of traces on operator ideals, it is desirable to treat not only the complex case. Several proofs become much easier when the underlying operators are represented by real matrices. Motivated by this observation, we prove two theorems which, to the best of our knowledge, are not available in the real setting: (1) every operator is a finite linear combination of orthogonal operators,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Mathematics
سال: 2020
ISSN: 2391-5455
DOI: 10.1515/math-2020-0117